Метод линейного программирования в разработке управленческих решений | Пример курсовой работы

Метод линейного программирования в разработке управленческих решений

Целью исследования является составление оптимального плана выпуска продукции, при котором фабрика будет иметь максимальную прибыль.

Геометрический смысл симплексного метода состоит в последовательном переходе от одной вершины многогранника ограничений к соседней, в которой целевая функция принимает лучшее (или, по крайней мере, не худшее) значение до тех пор, пока не будет найдено оптимальное решение – вершина, где достигается оптимальное значение функции цели (если задача имеет конечный оптимум).
Таким образом, имея систему ограничений, приведенную к канонической форме (все функциональные ограничения имеют вид равенств), находят любое базисное решение этой системы, заботясь только о том, чтобы найти его как можно проще. Если первое же найденное базисное решение оказалось допустимым, то проверяют его на оптимальность. Если оно не оптимально, то осуществляется переход к другому, обязательно допустимому базисному решению. Симплексный метод гарантирует, что при этом новом решении целевая функция, если и не достигнет оптимума, то приблизится к нему (или, по крайней мере, не удалится от него). С новым допустимым базисным решением поступают так же, пока не отыщется решение, которое является оптимальным.
Процесс применения симплексного метода предполагает реализацию трех его основных элементов:
способ определения какого-либо первоначального допустимого базисного решения задачи;
правило перехода к лучшему (точнее, не худшему) решению;
критерий проверки оптимальности найденного решения.
Симплексный метод включает в себя ряд этапов и может быть сформулирован в виде четкого алгоритма (четкого предписания о выполнении последовательных операций). Это позволяет успешно программировать и реализовывать его на ЭВМ. Задачи с небольшим числом переменных и ограничений могут быть решены симплексным методом вручную.
Двойственная задача линейного программирования
С каждой задачей линейного программирования можно некоторым образом сопоставить другую задачу ЛП, называемую двойственной по отношению к исходной (прямой).
Под двойственной задачей понимается вспомогательная задача линейного программирования, формулируемая с помощью определённых правил непосредственно из условий прямой задачи. Заинтересованность в определении оптимального решения прямой задачи путём решения двойственной к ней задачи обусловлена тем, что вычисления при решении ДЗ могут оказаться менее сложными. Трудоёмкость вычислений при решении ЗЛП в большей степени зависит от числа ограничений, а не от количества переменных.
Дадим определение двойственной задачи по отношению к прямой задаче линейного программирования, состоящей, в нахождении максимального значения функции
В ходе курсовой работы были решены следующие основные задачи:
рассмотрена сущность метода линейного программирования при принятии управленческих решений; проанализирована экономико-математическая модель задач линейного программирования; рассмотрен алгоритм разработки управленческого решения с использованием линейного программирования; построена экономико-математическая модель задачи; определен оптимальный план производства симплексным методом и решена задача оптимизации в табличном процессоре MS Excel.
Максимальная прибыль фабрики по изготовлению теста составила 6923 рублей, при этом необходимо произвести 153,8 кг бисквитного теста и 115,4 кг песочного теста.
Исходя из анализа оптимальных двойственных оценок, можно сделать следующие выводы:
Запасы яиц и сахара используются полностью. Полному использованию этих ресурсов соответствуют полученные оптимальные оценки y1, y2, отличные от нуля. Значит, трудовые ресурсы недоиспользуются в размере 28,8 чел.- ч.
Увеличение количества яиц на 1 шт. приведет к тому, что появится возможность найти новый оптимальный план производства продукции, при котором общая прибыль возрастает на 2,31 руб. и станет равной 6923 + 2,31 = 6925,31 руб. Анализ полученных оптимальных значений новой прямой задачи показывает, что это увеличение общей прибыли достигается за счет увеличения производства бисквитного теста на 0,38 руб. и сокращения выпуска бисквитного теста на 0,4 руб. Вследствие этого использование трудовых ресурсов увеличится на 0,13 руб.
Точно так же, увеличение на 1 кг количества сахара позволит перейти к новому оптимальному плану производства, при котором прибыль возрастет на 61,54 руб. и составит 6984,5 руб., что достигается за счет уменьшения выпуска бисквитного теста на 3,07 руб. и увеличения выпуска песочного теста на 7,7 руб., причем объем используемых трудовых ресурсов увеличится на 3,07 руб.
Уменьшение количество запасов сахара на 15 кг приведет к тому, что появится новый оптимальный план производства, при котором общая прибыль уменьшится на 923 рубля, т.е. станет равен 6000 рублей.
Увеличение цены бисквитного теста с 30 до 40 рублей за 1 кг не изменит оптимальное решение, т.к при анализе в отчете по устойчивости «Допустимое увеличение» равно 20, а это значит что при увеличении цены до 50 рублей за кг оптимальное решение не будет изменено.
Целью исследования является составление оптимального плана выпуска продукции, при котором фабрика будет иметь максимальную прибыль.

Что думаете про курсовую?

Поставьте оценку!